Purging Deleterious Mutations under Self Fertilization: Paradoxical Recovery in Fitness with Increasing Mutation Rate in Caenorhabditis elegans
نویسندگان
چکیده
BACKGROUND The accumulation of deleterious mutations can drastically reduce population mean fitness. Self-fertilization is thought to be an effective means of purging deleterious mutations. However, widespread linkage disequilibrium generated and maintained by self-fertilization is predicted to reduce the efficacy of purging when mutations are present at multiple loci. METHODOLOGY/PRINCIPAL FINDINGS We tested the ability of self-fertilizing populations to purge deleterious mutations at multiple loci by exposing obligately self-fertilizing populations of Caenorhabditis elegans to a range of elevated mutation rates and found that mutations accumulated, as evidenced by a reduction in mean fitness, in each population. Therefore, purging in obligate selfing populations is overwhelmed by an increase in mutation rate. Surprisingly, we also found that obligate and predominantly self-fertilizing populations exposed to very high mutation rates exhibited consistently greater fitness than those subject to lesser increases in mutation rate, which contradicts the assumption that increases in mutation rate are negatively correlated with fitness. The high levels of genetic linkage inherent in self-fertilization could drive this fitness increase. CONCLUSIONS Compensatory mutations can be more frequent under high mutation rates and may alleviate a portion of the fitness lost due to the accumulation of deleterious mutations through epistatic interactions with deleterious mutations. The prolonged maintenance of tightly linked compensatory and deleterious mutations facilitated by self-fertilization may be responsible for the fitness increase as linkage disequilibrium between the compensatory and deleterious mutations preserves their epistatic interaction.
منابع مشابه
Inbreeding and outbreeding depression in Caenorhabditis nematodes.
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. T...
متن کاملRapid fitness recovery in mutationally degraded lines of Caenorhabditis elegans.
Deleterious mutation accumulation has been implicated in many biological phenomena and as a potentially significant threat to human health and the persistence of small populations. The vast majority of mutations with effects on fitness are known to be deleterious in a given environment, and their accumulation results in mean population fitness decline. However, whether populations are capable o...
متن کاملInvariance (?) of Mutational Parameters for Relative Fitness Over 400 Generations of Mutation Accumulation in Caenorhabditis elegans
Evidence is accumulating that individuals in poor physiologic condition may accumulate mutational damage faster than individuals in good condition. If poor condition results from pre-existing deleterious mutations, the result is "fitness-dependent mutation rate," which has interesting theoretical implications. Here we report a study in which 10 mutation accumulation (MA) lines of the nematode C...
متن کاملEffects of Interference Between Selected Loci on the Mutation Load, Inbreeding Depression, and Heterosis.
A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that sele...
متن کاملThe fitness effects of spontaneous mutations in Caenorhabditis elegans.
Spontaneous mutation to mildly deleterious alleles has emerged as a potentially unifying component of a variety of observations in evolutionary genetics and molecular evolution. However, the biological significance of hypotheses based on mildly deleterious mutation depends critically on the rate at which new mutations arise and on their average effects. A long-term mutation-accumulation experim...
متن کامل